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Oscillatory Darcy flow in a horizontal channel containing two non-
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Abstract: The consequences of thermal radiation on unsteady oscillatory laminar flow of
two non-miscible fluids in the vicinity of a porous medium in a horizontal channel are
analyzed. The channel is partitioned into phases | and Il and both regions are filled with
viscous fluids with different physical properties. Phase Il contains an electrically conducted
fluid which exposed to a homogenous magnetic field. Equations governing the flow problem
are partial differential equations (PDEs). Analytical solutions are achieved for the velocity
profile along with temperature profile using two-term harmonic and non-harmonic functions.
Physical analysis of the significant parameters on velocity along with temperature
distributions are shown by means of graphs and explained technically. It is observed that the
dampening effects of Darcy’s resistance for porous medium lower the velocity of the fluid.
The temperature of fluid flowing in the channel is dropped with the rising radiation
parameter.

Keywords: Two-phase flow, oscillatory flow, Magnetohydrodynamics, porous medium,
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Nomenclature
u,Vv Velocities in X, Yy directions
X Y2 Spatial coordinates
t Time
h Width of channel
T. Temperatures of the fluid
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Subscripts _
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Temperatures of the walls of the channel

Temperature gradient
Thermal conductivities of fluids
Specific heat of fluids

Radiation heat flux

Magnetic field
Mean suction velocity

Positive constant
Average velocity

Mean absorption coefficient
Permeability of porous medium
Eckert number

Prandtl number

Radiation parameter

Magnetic parameter
Dimensionless pressure gradient

Dynamic viscosities of fluids

Electrical conductivity of the fluid in phase |1
Densities of fluids

Porosity of porous medium
Dimensionless temperatures
Frequency parameter
Stefan-Boltzmann constant
Porosity parameter

Amplitude of oscillation

Ratio of dynamic viscosities
Ratio of thermal conductivities

i =1 for phase I, i =2for phase Il

1. Introduction

Flow of the fluid jointly with heat transfer analysis within a channel through a porous
media (A porous media is a volume of material composed of an interconnected void rigid
matrix. A porous medium is distinguished not only by its porosity, but also by its
permeability) has earned a phenomenal consideration from researchers and engineers for the
past couple of decades due to the fact that this research area has significance in many
geophysical and engineering applications. These types of applications are water filtration,
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petroleum engineering, bio-convection in a porous medium, underground waste disposal in
geotechnical engineering, scattering of chemical contaminants in water-saturated soil, solid
matrix heat exchangers, migration of moisture in fibrous insulation, clean-up of refineries,
filter problems in chemical engineering and extraction of geothermal power. The designing
of pebble beds reactors in nuclear engineering and thermal reaction between heat-producing
porous beds and overlying liquid layer are also examples of this area of research. Heat
transfer analysis of unsteady oscillatory flow passing by porous media in a horizontal
composite channel with viscous and Darcian dissipation was examined by Umavathi et al.
[1]. Singh et al. [2] inspected the transient and non-Darcian impacts on natural convection
flow through a vertical channel which was partially saturated with porous media. Cekmer et
al. [3] performed the analysis analytically on free convection heat transfer through a channel
saturated with a porous medium. Chuhan and Agrawal [4] studied the impact of
magnetohydrodynamic convection within a channel which was placed vertically with viscous
as well as Ohmic dissipation. Hasnain et al. [5] discussed the impact of porosity in an inclined
channel on two non-miscible fluids flow and heat transfer with the magnetic field. Asghar et
al. [6] offered the analytical solution of equations represented the problem of heat transfer
through porous media within the deformable channel. Using the Adomain decomposition
method, Akinshilo [7] study the heat transfer analysis of non-Newtonian fluid between
parallel plates with a porous medium. Using the Darcy-Brickman model, Yang et al. [8]
investigated the problem of heat transfer as well as entropy generation. They considered N-
layers of porous medium which partially filled the channel instead of a single layer.

The flow of an electrically conducted fluid passing through a channel has preeminent
importance in several engineering processes due to its potential applications. Designing of
cross-field accelerators, magnetohydrodynamic (MHD) generators, shock tubes as well as
pumps are some of the applications. Some more applications of MHD channel flow are heat
treated substances going among a feed roll and a wind-up roll, glass fiber and aerodynamic
extrusion of plastic sheets. Several authors have studied the magnetohydrodynamic fluid flow
phenomena in a channel with various assumptions. Malashetty et al. [9] considered the fully
developed free convection flow of two magnetohydrodynamic fluids together with heat
transfer in a channel and presented approximate solutions using perturbation method. Sivaraj
et al. [10] examined mixed convective and laminar flow of two incompressible as well as
electrically conducting fluids in a vertical channel. One region of the channel was filled with
viscoelastic fluid while other with viscous fluid. Abbas et al. [11] discussed the heat transfer
analysis of the MHD flow of two non-miscible fluids through an inclined channel.
Furthermore, in another analysis Abbas et al. [12] analyzed the velocity as well as thermal
slip impacts on MHD two-phase viscous fluid flow with heat transfer. Akbar et al. [13]
numerically studied the analysis of heat and mass transfer within nanofluid flow under the
influence of a magnetic field passing through a channel. A channel has both porous walls as
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well as porous media. In the presence of a magnetic field, Sharma and Mehta [14] examined
the unsteady flow of two non-miscible fluids through a horizontal channel with heat transfer.
Verma and Gupta [15] examined the MHD viscous fluid flow passing through the porous
channel with suction/injection. VeeraKrishna and Chamkha [16] studied the MHD unsteady
flow of non-Newtonian fluid within infinite vertical plates filled with porous media. They
also take into account the outcomes of radiation and chemically reactive species.

In the above studies analysis of radiative heat transfer in natural convection has not
been considered, however, radiative-convective flows come across in a variety of
technological and environmental procedures such as in fire research, cooling and heating of
channels, aeronautics and so on. Therefore, the study of convective along with thermal
radiative flow has great importance due to their association in several practical applications.
Chauhan and Kumar [17] did an analysis of fully developed mixed convection viscous fluid
flow with thermal radiation and viscous dissipation between two infinite vertical parallel
walls. Mathew et al. [18] looked into the problem of the combined influence of both radiation
and Hall current. In this investigation the authors, considered convective heat and mass
transfer within the MHD fluid flow through rotating horizontal porous channel. Heat and
mass transfer analysis was carried out by Hayat et al. [19] of the three-dimensional boundary
layer flow of MHD viscous fluid within two infinite parallel plates with radiation. Between
the vertical porous plate, Prakash and Muthtamilselvan [20] analyzed the effect of thermal
radiation on MHD flow of micropolar fluid. Degan et al. [21] discussed the impact of
hydrodynamic anisotropy over mixed convection through vertical channel filled with porous
medium and affected with radiation. The influence of Hall current and radiation on the MHD
oscillatory flow passing through a vertical channel in the presence of porous media was
investigated by VeeraKrishna et al. [22].

Because of the complex structure of porous media, the liquid flowing by it is jumbled
in a chaotic manner that significantly improves the heat transfer among liquid and the solid
segment comprising the media. Due to this, porous media is chosen in various heat transfer
regions including stirling engine, cryocoolers and regenerative heat exchanger. Therefore,
the main purpose of the present investigation is to examine the oscillatory flow of two
immiscible viscous fluids within a porous space channel which is placed horizontally with
the magnetic field and radiation. An approximate analytical solution of coupled partial
differential equations is developed for the velocity and temperature distributions by
employing two-term harmonic and non-harmonic functions. Outcomes of some important
physical parameters on the fluid velocity along with temperature are examined and discussed
through tables and graphs.

2. Problem formulation
Consider a fully developed and laminar flow of two immiscible fluids flowing
through a horizontal channel extending in the Z— and X—directions. Geometrically, the
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problem under discussion is depicted in Fig. 1. The region 0 <y <h is named as phase | and
the region —h < y < 0 is labeled as phase Il. Phase | is occupied with a viscous fluid and phase
Il is filled by an electrically conducting viscous fluid. An external magnetic field of

homogeneous intensity B, is applied in the Yy — direction and the flow is confined in a
porous medium. The walls of the channel are assumed to be at constant temperatures Tw and
T,, with the conditionT,, >T,, . The characteristics of fluid like viscosities, densities, and

conductivities of both fluids are supposed to be different and constant. The flow in a channel
is controlled by a constantly applied pressure gradient (—8p/8y) and temperature gradient

ie. AT=T, T,

Under these suppositions and considering o, =p, =pyand Cp, =Cp, =Cp,
flow equations for both phases are presented in the following form

For phase-I
oV,
Bl ()
oy
2
u1 ap DLy
_PH )
Po (at j T K (2)
(3T oT. aZT ou 2 aq
C —L =K, —= —t | - 3
" p[at IGVJ layzwl[@yJ oy )
For phase-1I
OV,
y 0 @)
oy
2
Po %"'Vz% =i, ¢ UZZ _@_(0/,12 ,—oB,u,, (5)
ot oy oyt ox kK
oT oT aZT ou 2 0 ]
pOCp[ 6t2 "V 6y2J: K, ayzz T H, [6_yZJ —%+GBOZU22, (6)

By applying Rosseland approximation [23], the radiative heat flux is explained as
follows
4" oT*
O =—"r 2 (7)
3k oy

T* is stated in the form of a linear function of the temperature by employing Taylor’s series
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about T, and hence we get
T*=4T,°T -31,° (8)
The fluid satisfies the no-slip boundary condition on the walls of the channel.
Furthermore, the continuity of fluid velocity, fluid temperature as well as shear stress is

expected at the interface region. Hence the appropriate boundary and interface conditions for
the velocity profiles are

u(h)=0, u,(-h)=0, u,(0)=u,(0),

PR R ©
oy oy
and for the temperature are
L(h)=T,. T.(-h)=T,. T(0)=T,(0).
1
KTk, 2 ot y=o 10
oy oy
Following Chamkha [24], we are taking (assuming V, =V, =V)
V=V, (L+cAe), (11)

here A symbolize positive constant with ¢ <<1 such that ¢ A<1. The transpiration velocity
is assumed to vary periodically with time about a non-zero constant mean suction velocity

V,, and the case of constant transpiration velocity can be obtained by taking e A=0.

The following non-dimensional variables and quantities are applied to reduce the
governing equations in non-dimensional form

*. * 2 * * * T_TW
u=utd, y=yh, t:h—t , V:ZV :L, w:iza),ez =,
% h™ vl h Ty — T,

h*> (op . _
P:Mq(&j,i:hzwlk,EC:ulZ/CpAT,PI’:MCp/Kl,,BzKZ/Kl, (12)
Rd :160*TW23/3kK1,M =Bho ! u,,a=w u,

The asterisks are removed for convenience with the assumption that now all the quantities
are dimensionless, so Egs. (2) — (6) become

For Phase-I
2
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2 2
%+V%=[1+Rd)a€1+Ec % , (14)
ot oy Pr oy oy
For Phase-11

ou, au o’u

24v—2=q-—2-P-2au,—M?au,, (15)
ot oy oy

2 2

602+V692:(ﬂ+Rd)6921+aEc || EcM 2au,2. (16)
ot oy Pr oy oy

The boundary conditions in new variables become

M _ oM gy, (7
oy

6.(0)=1  6,(-1)=0, 6,(0)=06,(0),
o6, 00 (18)
—=p—%at y=0,
y Py

3. Solution methodology

The equations (13)-(16) are solved with the conditions (17) and (18). These equations
are coupled nonlinear PDEs and their closed-form solution cannot be achieved. However,
these governing equations of the flow can be reduced to ordinary differential equations by
assuming

U (Y,t) =uyg (V) +e“u, (Y), U, (y,t)=uy(y)+ee™u,(y),  (19)
6(y.t)=0,(y)+e€"6,(y), 6, (y.t) =0 (y)+e€"On(y).  (20)

This is a valid assumption because of the choice of V as defined in Eq. (11) that the amplitude
eA<<l.

Considering the real part of € ot , Egs. (19) and (20) become

U (Y)+ecosatuy (), U, (Y,t)=Uy(y)+ecosatu,(y),  (21)
0,(y,t)=0,(y)+ecosatf,(y), 6,(y,t)=0,(y)+ecosato,(y).  (22)

|
=
—_~
=<
—
I

Using Egs. (21) - (22) in Egs. (13) - (16), after comparing harmonic and non-harmonic terms
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and neglecting the terms of O(gz), we obtain the following system of equations.

For Phase-I
Non-periodic coefficients
2
2
(1+ Rd)d % _py ddg;‘) =—Pr Ec[d;;OJ : (24)
Periodic coefﬂuents
2
AUy My tanwtuy, - Au, = A% (25)
dy® dy dy '
(1+Rd) L% _pr 8% prytanatg, —prad% _oprec Mo M o)
dy” dy dy dy dy
For Phase-11
Non-periodic coefficients
2
—dd;JZZO — dcl:;‘) — oAUy, —aM?u,, =P, (27)
2
(B+Rd) ddfz‘) —Pr ddg;‘) =-PrEca [d;—yZOJ —PrEcaM ?u,’. (28)
Periodic coefficients
2
d—uzﬂ—%+a)tan wtUy, — o, —aM?u,, = p 3o : (29)
dy®  dy dy
4%,  do prad% o4 pr e Y dUn
B +Rd 2L _pr—2L 4 Prootan wtf,, = dy dy dy |. (30)
dy dy 21
—~20PrECM? U,U,,
The corresponding boundary conditions (17) and (18) reduce to
Non-periodic coefficients
Up(1)=0, Uy (-1)=0, U, (0)=uy(0),
31
Mo _ Yo gry—0. ()

oy

Periodic coefficients
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U, (1)=0,  u,y(-1)=0, u,(0)=u,(0),

My Mo gy (32)

Non-periodic coefficients
0, (1)=L 0, (—1)=O, 910(0)=020(0),

00, 00. (33)
—L=p—2 aty=0.
y Py M

Periodic coefficients
0, (1) =0, 0, (—1) =0, 0, (0) =0, (O)

00, 00. (34)
—L_p 2 aty=0.
y Py

Eqgs. (23) — (30) are the ordinary differential equations along with the boundary and interface
conditions (31) — (34) which can be solved in closed form.

The periodic terms correspond to the steady flow for both fluids and the steady-state
solutions for both the velocity and temperature profiles can be expressed as

U = — ; +C,e™ +C,e™, (35)
P myy sy
Uy =— +Ce™ +Ce™, (36)
am,
0,0 = Cs +Cq ™ +k,e*™ +k,e°m +k,e™. (37)

0,0 =C, +Cye™ +k,y +ke™ +ke™ +k,e*™ +ke’™ +k,e™’, (38)

However, the periodic (non-harmonic) terms solutions or transient velocity and temperature
distributions in both phases of the channel (Phase-1 and Phase-I1) carry out various forms
depending on the value of 4wtanwt for both fluid velocity and temperature. These types of

forms can be presented to be the following ones.

Case |
Phase |

u, =Cge™ +Ce™ +k,e™ +k e (39)
for 4(wtanwt—1) <1,
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— Mgy My Yy My M,y 2my
0,=C,e™ +C, e™ +k,e™ +ke™ +ke™

(40)
+Kyo€2™ + Ky €™ + Ky + k™ + K, ™
for 4dwtanwt(l+Rd)<Pr.
Phase Il
u, =C,e™” +Ce™ +ke™ +ke™ (41)

for da(ewtanot—a(M?+1)) <1,

_ Mysy Mye Y m,y mgy 2m,y 2mgy myYy
0,, =Ce™ +Ce™ + Ko + K™ +K,78™ +Kyge ™ +K,0e™™ +kye™

+ K318 + K™ + K™Y + Ky 8™+ Ky8™Y +Kkyge™Y + kg, 2™ 42
for 4dwtanoet(f+Rd)<Pr.
Case 11
Phase |
u, = (D, +D,y)e™” +k,e™ +k.e™
(43)
for 4(wtanwt—1)=1,
601 = (D + Dgy)e™ +k,e™ +kge™ +k 2™ (44
+ kZOezmzy + I:?L4enly + I?LSenzy + PlG yenly + I:)17 yenzy
for 4dwtanowt(l+Rd)=Pr.
Phase Il
u, = (D, +D,y)e’® +k,e™ +k,em™ (45)
for 4da(otanet-a(M?+1)) =1,
0, = (D, + Dgy)e™ +kyg + Kpg™ + Ky, + Kpg®™ + Ko™ + kg™ (46)
+k, ™Y + P, e’ + P.e’ + Pge™ +P,e™ + P, ye™ +P, ye™
for 4dwtanoet(f+Rd)=Pr.
Case 111
Phase |
u, = (G, cos 8,y +G,sind,y)e™ +k,e™ +k,e™ 47)
for A(wtanwt-A1)>1,
6, = (G, cos 8,y + G, sin5,y)e’ +k,,e™ +k ™ +k ™ +Kk,,e’™ 48)
+(R;COSS,Y + Ryg SN G, V)R c€" + (R 0085,y + Ry, SN 5,y) R 0™
for 4dwtanowt(l+Rd) >Pr.
Phase II
u,, =(G,c0s8,y+G,sind,y)e”” +ke™ +k,e™ (49)
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for 4da(otanet-a(M?+1))>1,
0,, = (G, cos 5,y + G, sin 5, Y)e" + Ky +Kyse™ +Kk,.e™ +k,ie’™
+Kyg8™ +Kyp™ +Kgyy€™ + (Ry, COS S, Y + Rag SiN 8, Y) Ry (50)
+(Ryy €088,y +R,,siNS,y)e™ + (R, coss,y+R,,sind,y)e™
for 4dwtanoet(f+Rd)>Pr.
All constants arising in the above equations are expressed in the Appendix section.

4. Results and discussion

We computed the velocity u(y) and temperature distributions 6(y) by solving the
coupled PDEs analytically using the two-term harmonic and non-harmonic functions as
shown in Egs. (19) and (20). The velocity and temperature profiles of the two immiscible
fluids in both phases of the channel are plotted and discussed for various parametric

conditions. Figs. 2-6 are presented to show the influence of M, A and Rd for the three
different cases (Case I, Il, I1l) as mentioned above. Tables 1-6 are tabulated to show the

effects of the amplitude ¢ A and the periodic frequency wt on the velocity and temperature

profiles of both fluids in the channel.

Fig. 2 is presented to show the effects of the M on u(y) in the channel for three

different cases. Since the fluid in the lower phase (Phase I1) of the channel is electrically

conducting and is affected by the magnetic field, so u(y) for fluid flowing in Phase Il is

decreasing significantly as compared to the fluid in Phase I. The decrement is due to an
increase in magnetic field which is applied perpendicular to the flow direction of fluid. The
applied magnetic field increases the resistive force named as the Lorentz force which results
in the reduction of velocity within the channel for all three cases. The influence of M on
O(y) is shown in Fig. 3. It can be seen clearly in the figure that the temperature of an
electrically-conducting fluid flowing in Phase Il is increasing with the increasing values of
the M . The resistive force within the flow increases as the magnetic field increases. As
shown in Fig., this tends to raise the fluid temperature for all cases I, Il and I1I.

Porosity refers to the ratio of the void volume to the total volume of the substance,
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therefore to see the usefulness of such material in the flow, Fig. 4 and 5 are drawn. Fig. 4

elucidates the effects of 2 on u(y) of both fluids in the channel. The damping impacts of

the Darcy resistance cause fluid speed to reduce across the entire channel (for all cases). This
expected phenomenon is because physically, an increase in the porosity of the medium
enhances the flow obstruction and thus, the flow rate will be decreased. Fig. 5 displays the

influence of 4 on 6(y). The effect of 1 on 6(y) is the same as its effects on the velocity of

the fluid.
The decreasing effect of Rd on 6(y) can be observed from Fig. 6. The cause for this

decrease is the fact that the impact of radiation suppresses the effect of the natural convection
by dropping the temperature variance between the fluid and the walls of the channel, hence
the temperature decreases. The reason for this drop is that radiation's impact suppresses the
effect of natural convection by lowering the variation in temperature between the liquid and

the channel walls and consequently reduces the temperature for all cases.

Tables 1-6 exhibit the influence of the amplitude ¢A and the periodic frequency
parameter ot on u and 6 in both phases of the channel for the three different cases. Tables
1 and 2 show these effects for Case I; Tables 3 and 4 for Case 11 and Tables 5 and 6 for Case
I11. 1t can be noticed from the tables that u increases as ¢ A increases for Cases | and Il1
whereas it decreases for Case Il. The impact of the increase in ¢ A on 0 is the same as its
impact on u which can be observed in Tables 1, 3, 5.

The effects of wt on the flow field for the three different cases of solutions are
presented in Tables 2, 4 and 6. For Case | (Table 2), the fluid velocity remains almost constant
for change inwt while @ increases with the rising values of wt. The fluid velocity through
the channel remains almost the same for Case 111 (Table 6) however 6 reduces with the raise

in wt. Table 4 is tabulated to show the effects of wt on u and @ for Case Il. This table

shows that both u and @ decrease slightly with an increase in the frequency parameter.

5. Conclusions
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This paper considers the MHD oscillatory flow of two immiscible fluids in a horizontal
porous media channel exposed to the thermal radiation. The two-term harmonic and non-
harmonic functions have been used to obtain the solutions of the governing flow equations.
The impacts of the pertinent parameters on the u and 6 were discussed through graphs and

tables whose summary is as follows

e Both u and 9 decrease with increasing values of the porosity parameter A.

e The fluid velocity decreases with a rise in M whilst the temperature of fluid
increases as the magnetic parameter increases.
e The fluid temperature for both phases of the channel decreases with increasing values

of the radiation parameter Rd.

e The amplitude of the transpiration velocity has a significant impact on the flow and
heat transfer aspects of fluids flowing in the channel.

e Fromtabulation, it can be found that u increases as amplitude ¢ A increases for Cases
I and 111, while for Case Il it decreases.
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improve the manuscript. The authors extend their appreciation to the Deanship of Scientific
Research at King Khalid University for funding this work through Research Groups Program
under grant number (R.G.P.2./66/40).

Fig. 1: Physical configuration of the problem
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Table 1: U and @ for ¢A with 1=02,M =04, P=5, ot =2.36, ®=0.75, Pr=0.7,
Ec=1La=0.25 g=1 Rd=0.5.

gA=0.00 eA=0.10 eA=0.20
y U 0 U 0 U 0
1.00 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000
0.80 1.38304 1.86122 1.36987 2.76852 1.35671 3.67583
0.60 2.34402 2.03199 2.33456 3.81979 2.32510 5.60759
0.40 2.96643 1.90595 2.96974 4.55345 2.97304 7.20095
0.20 3.31614 1.68337 3.33617 5.18783 3.35621 8.69229
0.00 3.44513 1.45265 3.48254 5.83303 3.51994 10.21340
-0.20 | 3.24375 1.23389 3.32815 5.34818 3.41255 9.46247
-0.40 | 2.63413 1.00308 2.72938 4.05395 2.82462 7.10483
-0.60 1.83502 0.72989 1.91522 2.67927 1.99541 4.62865
-0.80 | 0.94284 0.39768 0.98986 1.32944 1.03688 2.26120
-1.00 | 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 2: U and 6 for ot with 1=0.2, M =0.4, P=5, eA=0.001, ® =0.75, Pr=0.7,
Ec=1a=0.25 =1 Rd=05.

ot =2.0952 ot =2.3571 ot =2.6190
y U 0 U 0 U 0
1.00 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000
0.80 1.38293 1.8646 1.38291 1.87021 1.38291 1.88134
0.60 2.34392 2.0387 2.34393 2.04970 2.34396 2.07152
0.40 2.96640 1.91593 2.96646 1.93218 2.96654 1.96432
0.20 3.31622 1.69665 3.31634 1.71809 3.31648 1.76034
0.00 3.44532 1.46939 3.44551 1.49606 3.44570 1.54831
-0.20 | 3.24424 1.86460 3.24459 1.27466 3.24492 1.32378
-0.40 | 2.63471 2.03870 2.63508 1.03331 2.63541 1.06998
-0.60 1.83552 1.91593 1.83582 0.74920 1.83609 0.77275
-0.80 | 0.94315 1.69665 0.94331 0.40691 0.94345 0.41817
-1.00 | 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

[SYLWAN., 164(1)]. ISI Indexed

o



| SYLWAN. Engtish Edition ]

Printed in Poland

Table3: U and @ for ¢ A with 1 =02, M =04, P=5, ot =1.1902, @ =0.75, Pr =0.9999,
Ec=1 a=0.25 =1 Rd =0.5.

gA=0.00 ¢A=0.10 eA=0.20
y U 0 U 0 U 0
1.00 0.00000 1.00000 0.00000 1.00000 | 0.00000 1.00000
0.80 1.38304 1.86122 1.36987 2.76852 | 1.35671 3.67583
0.60 2.34402 2.03199 2.33456 3.81979 | 2.32510 5.60759
0.40 2.96643 1.90595 2.96974 455345 | 2.97304 7.20095
0.20 3.31614 1.68337 3.33617 5.18783 | 3.35621 8.69229
0.00 3.44513 1.45265 3.48254 5.83303 | 3.51994 10.21340
-0.20 | 3.24375 1.23389 3.32815 5.34818 | 3.41255 9.46247
-0.40 | 2.63413 1.00308 2.72938 4.05395 | 2.82462 7.10483
-0.60 | 1.83502 0.72989 1.91522 2.67927 | 1.99541 4.62865
-0.80 | 0.94284 0.39768 0.98986 1.32944 | 1.03688 2.26120
-1.00 | 0.00000 0.00000 0.00000 0.00000 | 0.00000 0.00000

Table 4: U and 6 for ot with 1=0.2,M =0.4, P=5, eA=0.005, @ =0.75, Pr=0.7,
Ec=1a=0.25 =1 Rd=05. «=0.25 g=1 Rd=0.5.

o =0.0001
ot =1.5704

U

U

w=01
wt =1.1902

0

w=10
ot =0.245

U 0

ot =
U

o=5

2.6190
0

1.00
0.80
0.60
0.40
0.20
0.00
-0.20
-0.40
-0.60
-0.80
-1.00

0.00000
1.38303
2.34402
2.96642
3.31614
3.44513
3.24375
2.63413
1.83503
0.94285
0.00000

1.00000
2.27983
2.54229
2.37865
2.08501
1.78907
1.51799
1.23640
0.90167
0.49187
0.00000

0.00000
1.37450
2.33681
2.96032
3.31096
3.44075
3.24165
2.63348
1.83542
0.94404
0.00000

1.00000
2.27476
2.53457
2.37000
2.07663
1.78174
1.51196
1.23176
0.89853
0.49029
0.00000

0.00000
1.36074
2.32519
2.95048
3.30262
3.43369
3.23825
2.63243
1.83605
0.94597
0.00000

1.00000
2.26658
2.52212
2.35607
2.06312
1.76992
1.50224
1.22428
0.89347
0.48775
0.00000

0.00000
1.35754
2.32249
2.94819
3.30068
3.43205
3.23746
2.63218
1.83620
0.94642
0.00000

1.00000
2.26435
2.51873
2.35228
2.05945
1.76671
1.49960
1.22226
0.89211
0.48707
0.00000
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Table5: U and 0 for éA with =02, M =0.4,P =5, ot =0.7857, ® =2, Pr=0.7,Ec =1,

o =0.258=1 Rd =0.5.

gA=0.00 ¢A=0.10 gA=0.20
y U 0 U 0 U 0
1.00 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000
0.80 1.38304 1.86122 2.8857 4.80411 4.38837 7.7470
0.60 2.34402 2.03199 4.96469 6.17468 7.58535 10.3174
0.40 2.96643 1.90595 6.32239 6.33351 9.67836 10.7611
0.20 3.31614 1.68337 7.05021 5.96523 10.7843 10.2471
0.00 3.44513 1.45265 7.24344 5.39619 11.0417 9.33972
-0.20 3.24375 1.23389 5.65855 4.70403 8.07335 8.17417
-0.40 2.63413 1.00308 3.96394 3.79306 5.29376 6.58304
-0.60 1.83502 0.72989 2.43861 2.65630 3.04219 4.58270
-0.80 0.94284 0.39768 1.13165 1.36399 1.32046 2.33029
-1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 6: U and @4
a=0.25 =1 Rd=0.5.

for ot with

A=02,M =04, P=5,¢A=0.001,Pr=0.7, Ec =1,

ot =0.5238 ot =0.7857 ot =1.0476
y U 0 U 0 U 0
1.00 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000
0.80 1.38333 1.8617 1.38454 1.86416 1.38277 1.85957
0.60 2.34451 2.03263 2.34664 2.03613 2.34355 2.02918
0.40 2.96706 1.90661 2.96978 1.91038 2.96584 1.90238
0.20 3.31685 1.68398 3.31988 1.68765 3.31552 1.67935
0.00 3.44589 1.45319 3.44893 1.45160 3.44456 1.44848
-0.20 3.24395 1.23435 3.24617 1.23736 3.23582 1.22978
-0.40 2.63409 1.00342 2.63546 1.00587 2.62573 0.99905
-0.60 1.83493 0.73011 1.83563 0.73182 1.82943 0.72650
-0.80 0.94278 0.39778 0.94303 0.39865 0.94052 0.39569
-1.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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D, +D,J, N (m12 - 2n2) D,J,
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m12 k17 + m11k18 + 2m1k19 m4 k26 + m5 k27 + 2m4k28 + 2m5 k29
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